Innovative Methodology Electrohydraulic pump-driven closed-loop blood pressure-regulatory system

نویسندگان

  • K. L. Siu
  • J. M. Ahn
  • K. H. Chon
چکیده

Siu KL, Ahn JM, Chon KH. Electrohydraulic pump-driven closed-loop blood pressure regulatory system. Am J Physiol Renal Physiol 296: F1530–F1536, 2009. First published April 9, 2009; doi:10.1152/ajprenal.90756.2008.—In this paper, we describe our design for a new electrohydraulic (EH) pump-driven renal perfusion pressure (RPP)-regulatory system capable of implementing precise and rapid RPP regulation in experimental animals. Without this automated system, RPP is manually controlled via a blood pressure clamp, and the imprecision in this method leads to compromised RPP data. This motivated us to develop an EH pump-driven closed-loop blood pressure regulatory system based on flow-mediated occlusion using the vascular occlusive cuff technique. A closed-loop servocontroller system based on a proportional plus integral (PI) controller was designed using the dynamic feedback RPP signal from animals. In vivo performance was evaluated via flow-mediated RPP occlusion, maintenance, and release responses during baseline and ANG IIinfused conditions. A step change of 30 mmHg, referenced to normal RPP, was applied to Sprague-Dawley rats with the proposed system to assess the performance of the PI controller. The PI’s performance was compared against manual control of blood pressure clamp to regulate RPP. Rapid RPP occlusion (within 3 s) and a release time of 0.3 s were obtained for the PI controller for both baseline and ANG II infusion conditions, in which the former condition was significantly better than manual control. We concluded that the proposed EH RPP-regulatory system could fulfill in vivo needs to study various pressure-flow relationships in diverse fields of physiology, in particular, studying the dynamics of the renal autoregulatory mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrohydraulic pump-driven closed-loop blood pressure-regulatory system.

In this paper, we describe our design for a new electrohydraulic (EH) pump-driven renal perfusion pressure (RPP)-regulatory system capable of implementing precise and rapid RPP regulation in experimental animals. Without this automated system, RPP is manually controlled via a blood pressure clamp, and the imprecision in this method leads to compromised RPP data. This motivated us to develop an ...

متن کامل

Takagi - Sugeno fuzzy control scheme for electrohydraulic active suspensions

Abstract: The paper presents a new control strategy for active vehicle suspensions using electrohydraulic actuators based on Takagi-Sugeno (T-S) fuzzy modelling technique. As the electrohydraulic actuator dynamics is highly nonlinear, the T-S fuzzy modelling technique using the idea of “sector nonlinearity” is applied to exactly represent the nonlinear dynamics of electrohydraulic actuator in a...

متن کامل

Model-based control of a 6-dof electrohydraulic Stewart–Gough platform

In this paper, a novel model-based controller for a six Degree-of-Freedom (dof) electrohydraulic Stewart–Gough platform is developed. Dynamic models of low complexity are employed that describe the salient dynamics of the main electrohydraulic components. Rigid body equations of motion and hydraulics dynamics, including friction and servovalve models are used. The developed feedback controller ...

متن کامل

Real World Modeling and Nonlinear Control of an Electrohydraulic Driven Clutch

In this paper, a complete model of an electro hydraulic driven dry clutch along with its performance evaluation has elucidated. Through precision modeling, a complete nonlinear physical and full order sketch of clutch has drawn. Ultimate nonlinearities existent in the system prohibits it from being controlled by conventional linear control algorithms and to compensate the behavior of the sy...

متن کامل

Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber

In this article, we demonstrate a novel microfluidic flow chamber driven by surface acoustic waves. Our device is a closed loop channel with an integrated acoustic micropump without external fluidic connections that allows for the investigation of small fluid samples in a continuous flow. The fabrication of the channels is particularly simple and uses standard milling and PDMS molding. The micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009